A fuzzy guided genetic algorithm for operon prediction

نویسندگان

  • Elizabeth Jacob
  • Roschen Sasikumar
  • K. N. Ramachandran Nair
چکیده

MOTIVATION The operon structure of the prokaryotic genome is a critical input for the reconstruction of regulatory networks at the whole genome level. As experimental methods for the detection of operons are difficult and time-consuming, efforts are being put into developing computational methods that can use available biological information to predict operons. METHOD A genetic algorithm is developed to evolve a starting population of putative operon maps of the genome into progressively better predictions. Fuzzy scoring functions based on multiple criteria are used for assessing the 'fitness' of the newly evolved operon maps and guiding their evolution. RESULTS The algorithm organizes the whole genome into operons. The fuzzy guided genetic algorithm-based approach makes it possible to use diverse biological information like genome sequence data, functional annotations and conservation across multiple genomes, to guide the organization process. This approach does not require any prior training with experimental operons. The predictions from this algorithm for Escherchia coli K12 and Bacillus subtilis are evaluated against experimentally discovered operons for these organisms. The accuracy of the method is evaluated using an ROC (receiver operating characteristic) analysis. The area under the ROC curve is around 0.9, which indicates excellent accuracy. CONTACT [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction

This study presents a novel intelligent Fuzzy Genetic Differential Evolutionary model for the optimization of a fuzzy expert system applied to heart disease prediction in order to reduce the risk of heart disease. To this end, a fuzzy expert system has been proposed for the prediction of heart disease. The proposed model can be used as a tool to assist physicians. In order to: (1) tune the para...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

Using Fuzzy Cognitive Maps for Prediction of Knowledge Worker Productivity Based on Real Coded Genetic Algorithm

  Improving knowledge worker productivity has been one of the most important tasks of the century. However, we have few measures or management interventions to make such improvement possible, and it is difficult to identify patterns that should be followed by knowledge workers because systems and processes in an organization are often regarded as a death blow to creativity. In this paper, we se...

متن کامل

Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system

Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2005